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The highly efficient selective monohydrolysis of symmetric diesters has been applied to monohydrolysis
of several dialkyl malonates and their derivatives. The best conditions apply 0.8–1.2 equiv of aqueous
KOH with a co-solvent, THF or acetonitrile, at 0 �C. The procedure is highly practical, yielding the corres-
ponding half-esters in high yields in a straightforward manner, without inducing decarboxylation. It was
found that the selectivity tends to become higher with increased hydrophobicity.

� 2008 Elsevier Ltd. All rights reserved.
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Half-esters are very important synthetic building blocks. In par-
ticular, half-esters of malonic acid and its derivatives have been
applied to synthesis of a variety of significant compounds.1 Half-
esters are commonly prepared by monohydrolysis of symmetric
diesters with the use of enzymes, reactions which provide no basis
for prediction of the reactivity. Classical saponification tends to
produce a dirty mixture of the starting diester, the diacid and the
half-ester, even with the use of 1 equiv of a base.

Half-esters of malonic acid and their derivatives are still diffi-
cult to obtain because of potential decarboxylation. A limited num-
ber of examples of selective monosaponification have been
reported starting from diethyl malonate, dimethyl malonate,2 or
their derivatives.3 However, most of these procedures require sev-
eral steps, a large amount of the starting diesters, and a long time,
and systematic studies have not been reported before. Some
modified procedures have been reported that apply Meldrum’s
acid,4 4-nitro-3-oxobutyrate,5 carboxylic acids,6 or enzymes.7

These methods produce rather modest yields of the corresponding
half-esters, or isolated yields of the half-esters are not reported,
and the enzymes reported are not commercially available.

However, by applying the selective monohydrolysis of symmet-
ric diesters we reported before,8 we have been able to obtain a
series of half-esters of malonic acid derivatives in high yields in a
straightforward manner. Herein we describe the synthesis of these
half-esters of malonic acid and some derivatives by our modified
procedure.
ll rights reserved.
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ayama).
Earlier, we reported highly efficient selective monohydrolysis of
symmetric diesters applying aqueous NaOH and THF media. This
reaction enables monohydrolysis of a series of symmetric diesters
in high yields (Scheme 1).8

The selectivity was found to be particularly high for cyclic 1,2-
diesters with the two ester groups in close proximity, even with
the use of almost 2 equiv of the base, producing the corresponding
half-esters in near-quantitative yields. We reasoned that electro-
static attractive interaction between the two closely located car-
bonyl groups may play a role in this high selectivity. We have
been expanding the scope of this reaction to other diesters as well
that do not necessarily adopt such ideal conformation. Here we
applied this highly selective monohydrolysis reaction to selective
monohydrolysis of diesters of malonic acid and their derivatives.

When we tried selective monohydrolysis of dimethyl malonate
according to the conditions we reported before,8 only 22% of the
corresponding half-ester was obtained, perhaps due to the
expected decarboxylation and overuse of the base, as well as lack
of the ideal conformation of the starting diester. Therefore we
reduced the equivalent of the base. We also switched the type of
base to maximize the reaction conditions.
CO2R 0 ºC CO2R
R=Me or Et

Scheme 1. Selective monohydrolysis of symmetric diesters.
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Table 2
Selective monohydrolysis dialkyl malonate derivatives

RO OR

O O

R'

1) THF/H2O
aqueous base, 0 °C

2) H3O+
RO OH

O O

R'
R=Me, Et, Pr 
R'=H, Me, Ph

3-10
3a-10a

Entry Diester Base Equivalent Time Half-estera (%)

1
EtO OEt

O O

3

KOH 0.8 1 h 90
2 NaOH 1.0 1 h 86 (3)

3 PrO OPr

O O

4

KOH 0.8 1 h 91 (8)
4 NaOH 1.0 0.5 h 92 (8)

5 MeO OMe

O O

5

CH3
KOH 1.2 1.5 h 94 (2)

6 NaOH 1.2 1.5 h 93 (6)

7 EtO OEt

O O

CH3

6

KOH 1.2 1.5 h 96 (2)
8 NaOH 1.2 1.5 h 96 (4)

9 PrO OPr

O O

CH3
7

KOH 1.2 1.75 h 97 (3)
10 NaOH 1.2 1.75 h 98 (2)

11 MeO OMe

O O

8
Ph

KOH 1.2 1 h 95 (5)
12 NaOH 1.2 1 h 95 (5)

13 EtO OEt

O O

Ph
9

KOH 1.2 5 h 94 (4)
14 NaOH 1.2 5 h 86 (13)

O O
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First the optimal amount of the base was examined for mono-
hydrolysis of dimethyl malonate, 1. We changed the amount of
the base to 1.2, 1.0, or 0.8 equiv as well as the base itself and exam-
ined the yield of the half-ester. The procedures are similar to those
we reported before.9 The following table is a summary of the type
of base, the equivalent, and the reaction times.

From these results, we found that the reactivity slightly
increased with the use of KOH over NaOH with comparable selec-
tivity, while LiOH slightly decreased the selectivity and reactivity.
This tendency was expected from our previous studies comparing
the selectivity of monohydrolysis of dimethyl glutarate with LiOH,
NaOH, KOH, and CsOH.10,11 In these reactions, the isolated yields of
the half-ester and diester indicated that although a small amount
of diacid (malonic acid) perhaps formed, it was not extracted dur-
ing the work-up procedures, probably due to the small hydropho-
bic portion, indicating the practical aspect of this reaction. The
product in this monohydrolysis reaction, monomethyl malonate,
2, is among those most frequently applied to organic synthesis.
This monohydrolysis appears to allow the highly practical synthe-
sis of 2 with a reaction time of only about 1 h, which illustrates the
synthetic utility of this monohydrolysis.

We next examined a wider range of dialkyl malonates and their
derivatives using aqueous NaOH or KOH as a base. The results are
summarized in Table 2. Most of these diesters are commercially
available. Some diesters were prepared by the standard Fischer
esterification.

Unlike classical monosaponification which tends to yield a com-
plex yellowish reaction mixture, in all cases in our reactions, only
pure half-esters, starting diesters, and in rare cases diacids, if ex-
tant, were isolated. Although in some cases in Table 2, based on
the percentage of the yield of the half-ester and recovered diester,
small amounts of the diacids appear to have formed, the diacids
were not extracted when the reaction mixture was worked up.
All the obtained half-esters had excellent purity, giving sharp ele-
mental analysis data. No decarboxylated products were detected in
any of the monohydrolysis reactions we tried. Overall, KOH tends
to be more reactive and slightly more selective than NaOH, as
was observed in the reaction above in Table 1. This tendency
may be best illustrated in the monohydrolysis of diethyl phenyl-
malonate, 9 (entries 13 and 14), which showed enhanced reactivity
and selectivity with the use of KOH, compared to the results we
previously published with the use of NaOH for monohydrolysis
of the same diester, 9.8

Interestingly, an increase in the hydrophobicity of the molecule
also seems to improve the selectivity. For example, the yields of the
Table 1
Selective monohydrolysis of dimethyl malonate

1) THF/H2O
aqueous base

0 ºC

2) H3O+MeO OMe

O O

MeO OH

O O

1 2

Entry Base Equivalent Time Half-ester 2a (%)

1 LiOH 0.8 1 h 61 (13)
2 NaOH 0.8 0.5 h 62 (3)
3 KOH 0.8 1 h 84
4 LiOH 1.0 1 h 80 (10)
5 NaOH 1.0 1 h 82 (10)
6 KOH 1.0 1 h 83 (3)
7 LiOH 1.2 1 h 75 (10)
8 NaOH 1.2 1 h 83 (5)
9 KOH 1.2 1 h 74

a Isolated yield of the half-ester. The recovered diester is shown in the paren-
theses (%).

15b PrO OPr
Ph
10

KOH 0.8 33 h 77 (22)
16b NaOH 0.8 33 h 68 (32)

a Isolated yield of the half-ester. The recovered diester is shown in the paren-
theses (%).

b Acetonitrile was used instead of THF as a co-solvent.
half-ester increase with ester groups that are more hydrophobic in
comparison of the monohydrolysis of diesters 1, 3, and 4 (Table 1,
and entries 1–4). The yields of half-esters become even higher
when the additional methyl or phenyl group is introduced (entries
5–14). One of our hypotheses in this monohydrolysis reaction is
that upon the monohydrolysis of the two identical ester groups,
inter- and/or intramolecular hydrophobic attractive interactions
within the remaining portion of the molecule may play an impor-
tant role for this high selectivity, as such aggregates may be pro-
tected from further hydrolysis.12 Therefore, this tendency may
explain such potential hydrophobic interaction. The only exception
is monohydrolysis of dipropyl phenylmalonate, 10 (entries 15 and
16), probably due to the extended period of the reaction time,
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which also sometimes allowed isolation of a visible amount of the
corresponding diacid. Here the use of another slightly polar aprotic
solvent that is slightly miscible with water, acetonitrile, instead of
THF as a co-solvent helped accelerate the reaction time to some
extent, increasing the yield of the half-ester by about 10%. Earlier
we studied the influence of the co-solvent in this monohydrolysis
and found that a slightly polar aprotic solvent with a small degree
of miscibility with water appears to be an effective co-solvent.13 It
may also be possible that introduction of several bulky groups pro-
hibited adoption of a preferable conformation for this selectivity.

In summary, we have found highly practical conditions with
aqueous KOH or NaOH with THF or acetonitrile as a co-solvent at
0 �C to selectively monohydrolyze a series of dialkyl malonates
and their derivatives. The yields here are among the highest
reported. All the half-esters prepared here showed excellent
purity14 and are quite stable over a long period of time. We also
found that the selectivity generally increases as the hydrophobicity
of the starting diesters increases.
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